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Abstract-Perturbation solutions for the phase-change problem during solidification involving the wall 
conduction and wall-material interfacial thermal contact resistance boundary condition are presented in a 
straightforward approximate analytical manner. Compatison is i&de between the present result and those 
in the case with neglecting the effects of wall-material interfacial thermal resistance and/or wall conduction. 
It is found that the solidification rate increases with decreasing wall~material interfacial thermal resistance, 
or increasing Stefan number, or decreasing the ratio of solidified-material thermal conductivity to wall 

thermal conductivity. 

INTRODUCTION 

THE HEAT-TRANSFER problems involving phase change 
with the wall conduction and wall-material interfacial 
thermal contact resistance boundary condition are of 
particular interest in applications such as ice forma- 
tion, freezing food, solidification of castings and 
ingots, metallurgy, the crystal growth from melts, and 
various other solidification technologies. For exam- 
ple, during formation of ice, the heat extracted from 
the liquid and the latent heat of solidification liberated 
at the solid-- liquid interface are transferred across the 
solid phase. the solid-mold interface, and the mold, 
encountering at each one of these steps a certain ther- 
mal resistance. As the water solidifies, an air gap may 
form due to the imperfect solid&mold contact and a 
lubricant may sometimes be used to facilitate removal 
of the solidified ice from the mold. The prediction of 
temperature distributions and solidification/melting 
rate is very important in some modern technologies 
in order to control the fundamental parameters such 
as the speed of fabrication, the incidence of defects, 
as well as the influence on final properties of products 
and on the possibility of damage to the wall-material 
interface contact surface. But many important physi- 
cal heat-transfer processes that occur across interfaces 
during solidification/melting have not been 
adequately studied and are not well understood. An 
exact analysis [l, 21 has been presented to treat the 
generalized unidirectional solidification problem sub- 
ject only to the constraint that the metal-mold inter- 
facial thermal contact resistance (heat transfer 
coefficient) be invariant. The technique involves the 
mathematical expedient of representing componenfs 
of the interfacial thermal resistance by virtual layers 
of solid metal and/or mold. It is demonstrated [3] 
that the kinetic and thermal description of the model 
reduces to the expected one in three simple limiting 

cases. Viskanta reviewed the heat transfer problems of 
phase change with/without the mold-metal interface 
during melting and solidification of metals [4]. 

However, mathematical modeling is a powerful tool 
to aid in the task of understanding and control of 
complex processes during solidification and melting. 
Due to the non-linear boundary condition at the 
solid-liquid interface and the superimposition of wall- 
material interfacial thermal resistance, exact ana- 
lytical solutions are limited to a few simple cases. 
Therefore, approximate, semi-analytical and numeri- 
cal methods must be used to solved the phase-change 
problems [5. 61. Application of perturbation methods 
in transient heat-transfer problems needs special 
attention. Pedroso and Domoto [7, 81 successfully 
adopted the perturbation method in solving the sol- 
idification problem of saturated liquid with planar and 
spherical geometries. Huang and Shih [9] obtained the 
perturbation solutions during the freezing on a flat 
plate with constant wall temperature in a straight- 
forward manner. Yan and Huang [lo] applied the 
perturbation method to phase change problem subject 
to convection and radiation. Aziz and Na [l 1] pro- 
vided a heat transfer oriented approach to per- 
turbation techniques. Aziz and Lunardini [12] 
reviewed the importance and usefulness of the per- 
turbation method in phase-change heat-transfer 
problems. 

In the present investigation, the perturbation tech- 
nique is extended to the phase-change problem involv- 
ing the wall conduction and constant wall&material 
interfacial thermal contact resistance boundary con- 
dition during solidification of material. The tem- 
perature distributions of wall and solidified-material, 
as well as the speed, of the solid&liquid interface are 
to be determined and expressed in analytical forms. 
Comparison is made between the present result and 
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NOMENCLATURE 

specific heat at constant pressure 
error function 
dimensionless solidification rate, 
dH/dr 
position of solid-liquid interface 
dimensionless position of solid- 
liquid interface, h/l 
thermal conductivity 
thickness of the wall 
latent heat of solidification 
thermal contact resistance at the 
wall-material interface 
dimensionless thermal contact 
resistance, k,rll 
time 
absolute temperature in solidified- 
material or wall 
solidification temperature of 
material 
left-hand side wall surface 
temperature 

X space coordinate 
X dimensionless space coordinate, 

x/l. 

Greek symbols 

; 

thermal diffusivity, k/PC, 
the ratio of thermal diffusivity of 
solidified-material to wall, ~,/a, 

& Stefan number, C,,(T,- T,,)/L 
i the ratio of thermal conductivity of 

solidified-material to wall, k,/k, 
0 dimensionless temperature, 

(T- TON’- TO) 
i root of equation (63) 

P density 
z dimensionless time, East/l2 
r* Z/E = ~J/l’. 

Subscripts 
S solidified-material 
W wall. 

those in the case with neglecting the effects of wall- 
material interfacial thermal resistance and/or wall 
conduction. Furthermore, we also discuss the effects 
of varw the thermal resistance, the Stefan number 
and the ratio of thermal conductivity of materials on 
the process. 

ANALYSIS 

The geometric configuration and the coordinate 
system for a solidification process, with a homo- 
geneous wall of thickness I, with which we are con- 
cerned is schematically shown in Fig. 1. To simplify 
the analysis, the following fundamental assumptions 
are introduced [l, 2, 121 : 

Liquid 

Tf 

a 

To 

I0 X 

FIG. 1. Schematic model for the solidification process with 
wall conduction. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

conduction is the only heat-transfer mode and 
unidirectional ; 
a thermal contact resistance, r, exists at the wall- 
material interface and remains constant through- 
out the process ; 
both solid and liquid phases are homogeneous 
and isotropic ; 
the material solidifies with a macroscopically 
planar solid-liquid interface and at the sol- 
idification temperature, T,; 
superheat is assumed negligible and spurious heat 
losses from the liquid, by convection and radi- 
ation, are small and assumed negligible ; and 
the thermal properties of material and wall are 
independent of both position and time. 

In a plane coordinate system with the origin at the 
stationary wall-solid interface, the one-dimensional 
heat conduction describing the solidification process 
can be written in the following form : 

~(x,t)=~~(x,f) 0,x&j, (1) 

T,(x, t) = Tf atx = h(t), (2) 

k$(x, t) = p,L$ atx = h(t), (3) 

d2T 
-$x.t)=;~(x’t) -I<x<O, (4) 

9 

T,(x, t) = T,, atx = -1, (5) 
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k, 2 (x, t) = 
Ts (X> 0 - Tw (x, 0 

r 
atx = 0, (6) 

k,$(x,r) = T, (X> 4 - Tw 6% 0 
r 

atx=O, (7) 

where T,, ai, k, pi and C,, are the temperature, thermal 
diffusivity, thermal conductivity, density and specific 
heat of wall (for i = w) or solidified-material (for 
i = s), respectively. To is the left-hand side wall surface 
temperature assumed constant, x is the space coor- 
dinate, h is the location of solid-liquid interface, t is 
time and L is the latent heat of solidification. 

In the above system, equations (1) and (4) are the 

Assuming the magnitude of R, 4’ and p are of order 
one, then perturbation solutions to the system can be 
written in general as 

and 

8, = &,, + E&, + E2& + , (16) 

8, =e,+&e,,+E26r2+...r (17) 

g=g0+ag,+a2g2+.... (18) 

Substituting equations (16))( 18) into equations 
(9))(15), we treat them order by order and get the 
following systems : 

transient heat-conduction energy equations of wall a”: 
and solidified-material, respectively. Equations (2) 
and (5) are boundary conditions, equation (3) is the 
energy balance at the solid-liquid interface, equations 
(6) and (7) are the energy balance equations at the 
wall-solid contact. 

To prepare the foregoing model for a perturbation 
analysis, we recognize that the Stefan number, which 
signifies the importance of sensible heat to the latent 
heat, is less than unity and small compared to other 
variables in some phase-change problems, and there- 
fore it can serve as a small perturbation parameter. 
After defining the dimensionless variables of tem- 
perature Bi (i = w, for wall; i = s, for solid), space 
coordinate X, time r, solid-liquid interface position 
H, speed of solid-liquid interface g, Stefan number 
E, thermal resistance R, thermal conductivity /I and 
thermal diffusivity <, as : 

Ti-To 
0, = ~ 

T,-To 
i = sorw 

HE;, g+ 

&= 
C,,(T,-- To) 

L ’ 
R+, +z, (+ 

w 
(8) 

equations (l))(7) will become : 

E’ : 

(9) 

a2e.oE0 
ax2 ’ 

[~,01,= H = 1, 

a0 
gO= ax X=H’ F-1 

a20wo -ro 
ax* ’ 

ab 
g’= ax X=H’ F-1 

a20s2 de,, aeso 
-=go~+gljj-p 
ax* 

[&21x = H = 0, 

ak2 
g2= ax X=H’ F-1 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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If higher-order terms in the series are induced, the 
solutions will be more accurate. However, when the 
perturbation quantity is sufficiently small, higher- 
order terms can be neglected. 

The solutions to the equations (19))(39) are found 
to be : 

1 
o,, = - ~ 

(H+# ( 

(41) 

BS2 = D[AoX5+A,X4+A,X’+A?XZ 

+CZX+rlCz+Bi(B,-B,+Bz-By)], (42) 

@ 
wll 

= r(x+‘) 
H+rj ’ 

(44) 

C‘-. -c-q 
+BX+B+B”-B,+Bz-B, (45) 

and 

1 
90 =G’ (46) 

1 
-(i’X’+&Y’+c,), Yi = -- (H+r1)? z (47) 

g> = D(:A,~‘+aA,x3+tA2X’+iA?X+C1), 

D! 

where 

(48) 

rj= R+i, (49) 

C =2&3qH2--H’ 
I 

wH+v) ’ 
(50) 

-[A,HS+A,H4+A2H3 

+A~H2+BS(Bo-B~+Bz+B3)1 
H+rl 

A = H’ + 3qH2 + 3q2H+ /3<, 

A, = $ (H+ r), 

A, = ;rl(H+ul), 

Az = +[3(H+q)(q2+4C,)+A], 

A? = $ [3(H+rl)(4yC, --PO +41, 

8, = &W+rl)(B+ 11, 

B, = ;W+q)(3fi+2q+ I), 

B? =:[~(H+~I)(~C,+~I)+A]. 

& = 93(4C, -P)(H+q)+A], 

1 
DE------ 

3(H+#. 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

The above analysis shows that the complex phase- 
change problem involving wall conduction and wall- 
material interfacial thermal resistance can be solved 
by using the perturbation method. The temperature 
distributions of wall and solidified-material as well as 
solidified speed can be expressed in analytical forms. 
The location of solid-liquid H can be calculated by 
Runge-Kutta method from equation (18). Evaluation 
of these quantities are straightforward and much 
simpler. 

RESULTS AND DISCUSSION 

The result of the case without the effects of wall 
conduction and wall-material interfacial thermal 
resistance can be seen in earlier works [5, 9, 11, 121. 
The exact solutions are expressed as : 

(62) 

and 

H=21fi, (63) 

where I. is a root of the equation : 

J;Ile”’ erJ‘(iL) = c. * (64) 

In the case of infinite heat transfer across the wall- 
material interface (neglecting the wall-material inter- 
facial resistance), equations (6) and (7) of the energy 
balance equations at wall-solid contact will be 
changed into : 
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FIG. 2. Temperature distributions in the system for three 
values of R with E = 0.02, ( = 1.2, ,8 = 1.2 and r* = 100.0 
(*-* : the case ignoring the effects of wall conduction and 
wall-material interfacial thermal resistance, 0-O : the case 
concerning wall conduction but ignoring the wallLmateria1 

interfacial thermal resistance). 

- R = 1.0 
0.75 - - - - R = 1.5 

- - R = 2.0 

H OSO- 

0 20 40 60 80 100 
7 * 

FIG. 3. Solid-liquid interface position vs time for three values 
of R with i: = 0.02, { = 1.2 and /I = I .2. 

The solutions can be derived by following the similar 
perturbation procedures and found to be the same as 
equations (40))(61) but replacing rl with [. 

Figure 2 shows the temperature distributions ofwall 
and solidified-material with different value of dimen- 
sionless wall-material interfacial resistance R for 
a = 0.02, p = 1.2, [ = 1.2, and r* = 100.0. It is easy 
to see that the speed of the solid-liquid interface is 
the highest in the case ignoring the effects of wall 
conduction and wall-material interfacial thermal 
resistance, while the case concerning wall conduction 
but ignoring the wall-material interfacial thermal 
resistance is second, and the case concerning both 
effects is the lowest. Furthermore, the temperature at 
any position of the solidified-material, 6,, increases 
with increasing R, while the temperature at any pos- 
ition of the wall, 0,, decreases with increasing R. In 
Fig. 3 the effect of varying wall-material interfacid 
resistance on solid-liquid interface position during 
the process is demonstrated for F = 0.02, )!I = 1.2 and 
< = 1.2. The solidification rate increases with decreas- 
ing R. The above behaviors can be explained from 

l.oo- 0 

0.75 - 

e oso- 
- t=0.02 
-__ c=o.o4 
-- c=o.o6 

I I I I 
-0.5 0 0.5 1.0 1.5 2.0 

FIG. 4. Temperature distributions in the system for three 
values of i: with R = 1.0, ( = 1.2, /r = 1.2 and T* = 100.0. 

‘. 

the definition of the wall-material interfacial thermal 
resistance. As R is increased, the rate of energy trans- 
port across the wall-material interface decreases, and 
this leads to an increase in the net rate of heat gain 
from the boundary of the small local solidified- 
materials region and a decrease in that of the wall 
region. Consequently, its temperature responses are 
increased for solidified-material and decreased for 
wall. Consider equation (11) as the energy balance 
equation for the solid-liquid interface, in which the 
term of y expresses the speed of solid-liquid interface 
and the term of L@,/aX represents energy transport 
from the solid-liquid interface into solidified-material. 
As mentioned above, increasing R increases 8, and so 
the rate of energy transport from solid-liquid interface 
to solid is decreased, which results in a decrease in the 
speed of the solid-liquid interface. 

In Figs. 4 and 5 the effect of varying the Stefan 
number, B, on the temperature and sol&liquid inter- 
face position are demonstrated, respectively. As E is 
increased, the ratio of heat which can be stored within 
the solid to the heat released by solidification 
increases, and this leads to an increase in the solidified 
rate as well as a decrease in the net rate of heat gain 
from the boundary of the solid and an increase in that 
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FIG. 5. Solid-liquid interface position vs time for three values 
ofEwithR= l.O,[= 1.2andp= 1.2. 
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FIG. 6. Temperature distributions in the system for three 
values of i with R = 1.0, i: = 0.02, fl = 1.2. and T* = 100.0. 

of the wall in order to maintain a constant R. So, 
increasing E results in a decrease in 0, and an increase 
in both 8, and the speed of the solid-liquid interface. 

Figures 6 and 7 show the effect of varying <, the 
ratio of solidified-material thermal conductivity to 
wall thermal conductivity, on the temperature and 
solid-liquid interface position. As < is decreased, the 
rate of energy transport across the wall increases, and 
this leads to an increase in the solidified rate and a 
decrease in the net rate of energy gain from the bound- 
ary of the wall region as well as the net rate of heat gain 
from the boundary of the solidified-material region. 
Consequently, decreasing [ results in an increase in g 
and a decrease in both 0, and 0,. 

To be?tppropriate for perturbation analysis, the 
selection of a perturbation parameter which is small 
compared to others is of importance. In most prob- 
lems the perturbation quantity appears naturally in 
the equation and its choice is based on the physical 
understanding of the problem. The choice will then 
determine the simplicity or usefulness of the final solu- 
tion. In phase-change literature, the Stefan number is 
usually selected as peiturbation quantity. The mag- 
nitude of the Stefan number can vary considerably, 
depending on the material and the temperature 

l.oo- 

H OSO- 
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FIG. 7. Solid&liquid interface position vs time for three values 
of[withR= l.O,c:=O.O2andP= 1.2. 

difference involved. For water, it is less than unity; 
for metals it is of the order of l-10 [13]. Thus, for 
substances such as water and for materials whose 
Stefan number is very small compared to other vari- 
ables during the phase-change process, a perturbation 
method can be appropriately used. But, for metals 
such as the solidification of ingots, this perturbation 
analysis based on the assumption of a small Stefan 
number is not appropriate. 

In the above procedures, the magnitude of R, < and 
p are assumed to be of order one for the appropriate 
perturbation analysis concerning equations (8)-(14). 
However, those quantities can vary arbitrarily because 
those variables can be written with another proper 
form within the mathematical equations. It is appro- 
priate for the perturbation method. 

CONCLUSIONS 

In this work, it is seen that the perturbation tech- 
nique presented here is simple to use to predict quan- 
titative thermal information during the solidification 
process. Conclusions are summarized as : 

(1) 

(2) 

(3) 

(4) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

In the case without the effects of wall conduction 
and wall-material interfacial thermal resistance 
the solidification rate is the highest, while the case 
concerning wall conduction but ignoring the wall- 
material interfacical thermal resistance is second, 
and the case concerning both effects is the lowest. 
The temperature distributions of solidified- 
material during solidification will increase with 
increasing R, walllmaterial interfacial thermal 
resistance, or decreasing a, Stefan number, or 
increasing [, the ratio of solidified-material ther- 
mal conductivity to wall thermal conductivity. 
The temperature distributions of the wall during 
solidification will increase with decreasing R, or 
increasing E, or increasing {. 
The solidification rate will increase with decreas- 
ing R, or increasing E, or decreasing [. 

REFERENCES 

A. Garcia and M. Prates, Mathematical model for the 
unidirectional solidification of metals : 1. Cooled molds, 
Metahgical Transactions B 9,449-457 (1978). 
A. Garcia, T. W. Clyne and M. Prates, Mathematical 
model for the unidirectional solidification of metals : 2. 
Massive molds, Metallurgical Transactions B 10, 85-92 
(1979). ‘* 
T. W. Clyne and A. Garcia, Assessment of a new model 
for heat flow during unidirectional solidification of 
metals, ht. J. Heat Mass Transfer 23,773-782 (1980). 
R. Viskanta, Heat transfer during melting and sol- 
idification of melts, J. Heat Transfer 110, 1205-1219 
(1988). 
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids (2nd edition). Clarendon Press, Oxford (1959). 
N. M. Ozisik, Heat Conduction (1st edition), Chapter 
10. Wiley, New York (1980). 
R. I. Pedroso and G. A. Domoto, Perturbation solution 
for spherical solidiscation of saturated liquids, J. Heat 
Transfer 95,42-46 (1973). 



The phase-change problem 1855 

8. R. I. Pedroso and G. A. Domoto, Exact solution by 
perturbation method for planar solidification of a satu- 
rated liquid with convection at the wall, Int. J. Heat 
Mass Transfer 16, 18161819 (1973). 

9. C. L. Huang and Y. P. Shih, Perturbation solutions of 
planar diffusion-controlled moving-boundary problems, 
Int. .I. Heat Mass Transfer 18,689-695 (1975). 

IO. M. M. Yan and P. N. S. Huang, Perturbation solutions 
to phase change problem subject to convection and radi- 
ation, J. Heat Transfer 101,96100 (1979). 

Il. A. Aziz and T. Y. Na, Perturbation Methods in 
Heat Transfer (1st edition). Hemisphere, New York 
(1984). 

12. A. Aziz and V. J. Lunardini, Perturbation techniques in 
phase change heat transfer, ASME Appl. Mech. Rec. 46, 
29-67 (1993). 

13. A. D. Solomon, Mathematical modeling of phase change 
processes for latent heat thermal energy storage. Report 
No. ORNL/CSD-39, Union Carbide Corporation 
(1979). 


